HYDROLYSIS OF PHOSPHINAMIDES AND THE NATURE OF THE P-N BOND1

Paul Haake and Toru Koizumi

Department of Chemistry, Hall-Atwater Laboratories Wesleyan University, Middletown, Connecticut 06457

(Received in USA 20 October 1970; received in UK for publication 2 November 1970)

Carboxylic amides are quite stable towards chemical hydrolysis; elevated temperatures and high concentrations of acid or base are required for appreciable rates of hydrolysis. Yet, amides of phosphoric acid appear to be highly reactive. Phosphoramidate $(\underline{1})$ is a reactive phosphorylating agent² and creatine phosphate $(\underline{2})$ is a source for rapid generation of ATP. Part of the reactivity of these amides could be due to the polyfunctional nature of phosphates: both O⁻ and OH could facilitate cleavage of the P-N bond. We have studied monofunctional phosphinamides $(\underline{3})$ in order to understand the fundamental chemistry of the P-N bond in the absence of the perturbing effects present in phosphoramides $(e,g,\underline{1})$. The results demonstrate that the P-N bond in phosphorus amides is unusually labile under acid-catalyzed conditions.

In basic solution, phosphinamides undergo slow hydrolysis. The second-order rate constant ($v = k [HO^-][Amide]$) for hydrolysis of $\underline{3}$ is approximately the same as for benzamide. The comparison with benzamide is valuable because it demonstrates that the P-N bond is quite resistant to nucleophilic attack.

In contrast, phosphinamides are labile in dilute acid whereas fairly concentrated acid is required to achieve a relatively slow rate of hydrolysis of carboxylic amides. Pseudo-first-order rate constants for the hydrolysis of 3, 4, and 5 were obtained by spectrophotometric

measurements in buffered 10% CH₃OH-H₂O 90% (v/v) over the pH range 1.8 to 3.1 (Table 1). First order dependence on [H⁺] was observed. There was no indication of general acid-catalysis with the buffers we employed. The activation parameters for the hydrolysis of $\underline{3}$ (pH 2.4, T = 25-53°C) are: Δ H[‡] = 9.3 kcal/mol, Δ S[‡] = -35 eu and Δ F[‡] = 19.2 kcal/mol. The highly negative entropy of activation is consistent with an A-2 mechanism⁴ even if the entropy of protonation is taken into account. The deuterium solvent isotope effect, k_{D_2O}/k_{H_2O} , is 1.3(pH 2.4, 29.2°C) for the hydrolysis of $\underline{3}$. This also suggests an A-2 mechanism⁶ with rapid protonation preceding rate-determining nucleophilic attack by H₂O. The rates observed and the activation parameters for $\underline{3}$ indicate that this phosphinamide undergoes acid-catalyzed hydrolysis 5 x 10⁵ times faster than benzamide. The contrast with the results of alkaline hydrolysis (see above) suggests that the P-N bond is labilized in acid.

Table 1. Rate Constants for Hydrolysis of Phosphinamides in 10% CH₃OH - H₂O

Substrate	pН	T(°C)	$10^4 k_{\rm obs} ({\rm sec}^{-1})^a$
3	1.9	29. 2	12.7
3	2.4	29. 2	3.42
ରା ଅ ଅ	2.4	25.0	2.97
3	2.4	38.0	5.77
3	2.4	47.8	9.85
3	2.4	52.6	11.3
3	3.1	29. 2	0.77
4	2.4	29. 2	11.3
<u>4</u>	3.1	29. 2	2.53
<u>=</u>	2.4	29. 2	35.5
31414151151	3.1	29. 2	6.33

^aPseudo-first-order rate constants evaluated spectrophoto metrically

Substituent effects are useful in understanding the mechanism. The substituent effect on nitrogen $(\underline{3} > \underline{4} > \underline{5}, \ \rho^* = -1.0)$ (Table 1) is different from that for acid-catalyzed hydrolysis of carboxylic amides for which the ρ^* value is close to 0 or slightly positive. 8, 9 The ρ^* we observe for phosphinamides is in the expected order if the N-protonated species were reactive. A good correlation of $\log k_{obs}$ with pK_a of N-alkylanilinium ions also suggests reaction through the N-protonated species. 10 Partial hydrolysis of $\underline{3}$ in acidic ${}^{18}O-H_2O$ results in one equivalent of solvent-oxygen introduced into $(C_6H_5)_2PO_2H$ and no exchange into $\underline{3}$. These data strongly support

a mechanism (eq. 1) involving nucleophilic attack by water on 7.11

$$-\stackrel{O}{\stackrel{\parallel}{\parallel}} - NR_2 \xrightarrow{\stackrel{H^+}{\stackrel{\uparrow}{\parallel}}} - \stackrel{OH}{\stackrel{\uparrow}{\parallel}} - NR_2 \xrightarrow{\stackrel{O}{\stackrel{\downarrow}{\parallel}}} - NR_2 \xrightarrow{\stackrel{O}{\stackrel{\downarrow}{\parallel}}} - NR_2 \xrightarrow{\stackrel{O}{\stackrel{\downarrow}{\parallel}}} - \frac{1}{\stackrel{\uparrow}{\parallel}} - \frac{1}{\stackrel{\uparrow}{\parallel}} - \frac{1}{\stackrel{\uparrow}{\parallel}} - \frac{1}{\stackrel{\downarrow}{\parallel}} - \frac{1}{\stackrel{\downarrow$$

Although both protonated species ($\underline{6}$ and $\underline{7}$) may be present, the reactive tautomer appears to be $\underline{7}$. It is relevant that, unlike carboxylic amides, the nitrogen atom in $\mathcal{O}_2P(O)N(CH_3)_2$ is pyramidal although flattened somewhat from the geometry of trimethylamine. ¹² In the accompanying communication ¹⁰ we report pK_a's for protonated phosphinamides and some evidence on the predominant position of protonation.

The labilizing action of N-protonation is also seen in the case of anilides of diphenyl-phosphinic acid⁵ where N-protonation apparently causes dissociative displacement at phosphorus to be a lower energy pathway than eq. 1 which involves nucleophilic attack by water.

These results demonstrate that in the enzymic cleavage of P-N bonds, acid-catalysis should be very important. In contrast to many hydrolytic enzymes, the enzymes catalyzing hydrolysis of phosphorus amides may have greater function for electrophilic catalysis.

REFERENCES

- (1) Research supported by grant AM-12743 from the U.S. Public Health Service and grant GP-13453 from the National Science Foundation.
- (2) (a) R. F. Hudson, "Structure and Mechanism in Organo-phosphorus Chemistry," Academic Press, New York, 1965, Chap. 8;
 - (b) A. J. Kirby and S. G. Warren, "The Organic Chemistry of Phosphorus," Elsevier,
 Amsterdam, 1967;
 - (c) S. J. Benkovic and P. A. Benkovic, J. Am. Chem. Soc., 89, 4714 (1967);
 - (d) I. Oney and M. Caplow, ibid., 89, 6972 (1967);
 - (e) N. K. Hamer, J. Chem. Soc., (C), 404 (1966).
- (3) For the HO⁻ catalyzed hydrolysis of $\underline{3}$, $k_z = 15.5 \times 10^{-5} M^{-1} sec^{-1}$ was obtained at $90^{\circ}C$; k_z for benzamide was reported as $12.5 \times 10^{-5} M^{-1} sec^{-1}$ at $90^{\circ}C$.
- (4) L. L. Schaleger and F. A. Long, Adv. Phys. Org. Chem., 1,1 (1963).
- (5) P. Haake and D. A. Tyssee, Tetrahedron Letters, 3513 (1970).
- (6) C. A. Bunton and V. J. Shiner, J. Am. Chem. Soc., 83, 42, 3207 (1961).
- (7) The relative rate of the acid-catalyzed hydrolysis of <u>3</u> and benzamide is obtained using Meloche and Laidler's data (J. Am. Chem. Soc., <u>73</u>, 1712 (1951)) for benzamide.
- (8) G. Cauzzo, U. Mazzucato and A. Fiffani, Atti Accad. Nazl. Lincei, Rend., Classe Sci. Fis., Mat. Nat., 29, 348 (1960); C. A., 56, 12796f (1962).
- (9) P. D. Bolton and T. Henshall, <u>J. Chem. Soc.</u>, 1226 (1962). U. Mazzucato et al, <u>Ann. Chim.</u> (Rome) <u>50</u>, 521 (1960), C. A., <u>54</u>, 23643h (1960).
- (10) We conclude that the ρ* value supports reaction through N-protonation after consideration of the effect of substituents on both protonation and nucleophilic attack; see also T. Koizumi and P. Haake, Tetrahedron Letters, 4841(1970)
- (11) P. Haake, R. D. Cook, T. Koizumi, P. S. Ossip, W. Schwarz and D. A. Tyssee, <u>J. Am.</u> Chem. Soc., <u>92</u>, 3828 (1970).
- (12) M. Haque and C. N. Caughlan, Chem. Comm., 921 (1966).